Newton,'s Three Laws Of Motion
Newton's Three Laws
of Motion
Let us begin our explanation of how Newton changed our understanding of the Universe by enumerating his Three Laws of Motion.
This we recognize as essentially Galileo's concept of inertia, and this is often termed simply the "Law of Inertia".
This is the most powerful of Newton's three Laws, because it allows quantitative calculations of dynamics: how do velocities change when forces are applied. Notice the fundamental difference between Newton's 2nd Law and the dynamics of Aristotle: according to Newton, a force causes only a change in velocity (an acceleration); it does not maintain the velocity as Aristotle held.
This is sometimes summarized by saying that under Newton, F = ma, but under Aristotle F = mv, where v is the velocity. Thus, according to Aristotle there is only a velocity if there is a force, but according to Newton an object with a certain velocity maintains that velocity unless a force acts on it to cause an acceleration (that is, a change in the velocity). As we have noted earlier in conjunction with the discussion of Galileo, Aristotle's view seems to be more in accord with common sense, but that is because of a failure to appreciate the role played by frictional forces. Once account is taken of all forces acting in a given situation it is the dynamics of Galileo and Newton, not of Aristotle, that are found to be in accord with the observations.
This law is exemplified by what happens if we step off a boat onto the bank of a lake: as we move in the direction of the shore, the boat tends to move in the opposite direction (leaving us facedown in the water, if we aren't careful!).
There is a popular story that Newton was sitting under an apple tree, an apple fell on his head, and he suddenly thought of the Universal Law of Gravitation. As in all such legends, this is almost certainly not true in its details, but the story contains elements of what actually happened.
But as we increase the muzzle velocity for our imaginary cannon, the projectile will travel further and further before returning to earth. Finally, Newton reasoned that if the cannon projected the cannon ball with exactly the right velocity, the projectile would travel completely around the Earth, always falling in the gravitational field but never reaching the Earth, which is curving away at the same rate that the projectile falls. That is, the cannon ball would have been put into orbit around the Earth. Newton concluded that the orbit of the Moon was of exactly the same nature: the Moon continuously "fell" in its path around the Earth because of the acceleration due to gravity, thus producing its orbit. By such reasoning, Newton came to the conclusion that any two objects in the Universe exert gravitational attraction on each other, with the force having a universal form:
The constant of proportionality G is known as the universal gravitational constant. It is termed a "universal constant" because it is thought to be the same at all places and all times, and thus universally characterizes the intrinsic strength of the gravitational force.
where R is the total separation between the centers of the two objects. The center of mass is familiar to anyone who has ever played on a see-saw. The fulcrum point at which the see-saw will exactly balance two people sitting on either end is the center of mass for the two persons sitting on the see-saw. Here is a Center of Mass Calculator that will help you make and visualize calculations concerning the center of mass. (Caution: this applet is written under Java 1.1, which is only supported by the most recent browsers. It should work on Windows systems under Netscape 4.06 or the most recent version of Internet Explorer 4.0, but may not yet work on Mac or Unix systems or earlier Windows browsers.)
where P is the planetary orbital period and the other quantities have the meanings described above, with the Sun as one mass and the planet as the other mass. (As in the earlier discussion of Kepler's 3rd Law, this form of the equation assumes that masses are measured in solar masses, times in Earth years, and distances in astronomical units.) Notice the symmetry of this equation: since the masses are added on the left side and the distances are added on the right side, it doesn't matter whether the Sun is labeled with 1 and the planet with 2, or vice-versa. One obtains the same result in either case. Now notice what happens in Newton's new equation if one of the masses (either 1 or 2; remember the symmetry) is very large compared with the other. In particular, suppose the Sun is labeled as mass 1, and its mass is much larger than the mass for any of the planets. Then the sum of the two masses is always approximately equal to the mass of the Sun, and if we take ratios of Kepler's 3rd Law for two different planets the masses cancel from the ratio and we are left with the original form of Kepler's 3rd Law:
Thus Kepler's 3rd Law is approximately valid because the Sun is much more massive than any of the planets and therefore Newton's correction is small. The data Kepler had access to were not good enough to show this small effect. However, detailed observations made after Kepler show that Newton's modified form of Kepler's 3rd Law is in better accord with the data than Kepler's original form. This is the situation in the Solar System: the Sun is so massive compared with any of the planets that the center of mass for a Sun-planet pair is always very near the center of the Sun. Thus, for all practical purposes the Sun IS almost (but not quite) motionless at the center of mass for the system, as Kepler originally thought. However, now consider the other limiting case where the two masses are equal to each other. Then it is easy to see that the center of mass lies equidistant from the two masses and if they are gravitationally bound to each other, each mass orbits the common center of mass for the system lying midway between them:
This situation occurs commonly with binary stars (two stars bound gravitationally to each other so that they revolve around their common center of mass). In many binary star systems the masses of the two stars are similar and Newton's correction to Kepler's 3rd Law is very large. Here is a Java applet that implements Newton's modified form of Kepler's 3rd law for two objects (planets or stars) revolving around their common center of mass. By making one mass much larger than the other in this interactive animation you can illustrate the ideas discussed above and recover Kepler's original form of his 3rd Law where a less massive object appears to revolve around a massive object fixed at one focus of an ellipse.
These limiting cases for the location of the center of mass are perhaps familiar from our afore-mentioned playground experience. If persons of equal weight are on a see-saw, the fulcrum must be placed in the middle to balance, but if one person weighs much more than the other person, the fulcrum must be placed close to the heavier person to achieve balance.
Here is a Kepler's Laws Calculator that allows you to make simple calculations for periods, separations, and masses for Keplers' laws as modified by Newton (see subsequent section) to include the effect of the center of mass. (Caution: this applet is written under Java 1.1, which is only supported by the most recent browsers. It should work on Windows systems under Netscape 4.06 or the most recent version of Internet Explorer 4.0, but may not yet work on Mac or Unix systems or earlier Windows browsers.)
Thus, the weight of an object of mass m at the surface of the Earth is obtained by multiplying the mass m by the acceleration due to gravity, g, at the surface of the Earth. The acceleration due to gravity is approximately the product of the universal gravitational constant G and the mass of the Earth M, divided by the radius of the Earth, r, squared. (We assume the Earth to be spherical and neglect the radius of the object relative to the radius of the Earth in this discussion.) The measured gravitational acceleration at the Earth's surface is found to be about 980 cm/second/second.
We now come to the great synthesis of dynamics and astronomy accomplished by Newton: the Laws of Kepler for planetary motion may be derived from Newton's Law of Gravitation. Furthermore, Newton's Laws provide corrections to Kepler's Laws that turn out to be observable, and Newton's Law of Gravitation will be found to describe the motions of all objects in the heavens, not just the planets.
Kepler's Laws are illustrated in the adjacent animation. The red arrow indicates the instantaneous velocity vector at each point on the orbit (as always, we greatly exaggerate the eccentricty of the ellipse for purposes of illustration). Since the velocity is a vector, the direction of the velocity vector is indicated by the direction of the arrow and the magnitude of the velocity is indicated by the length of the arrow. Notice that (because of Kepler's 2nd Law) the velocity vector is constantly changing both its magnitude and its direction as it moves around the elliptical orbit (if the orbit were circular, the magnitude of the velocity would remain constant but the direction would change continuously). Since either a change in the magnitude or the direction of the velocity vector constitutes an acceleration, there is a continuous acceleration as the planet moves about its orbit (whether circular or elliptical), and therefore by Newton's 2nd Law there is a force that acts at every point on the orbit. Furthermore, the force is not constant in magnitude, since the change in velocity (acceleration) is larger when the planet is near the Sun on the elliptical orbit.
For the ellipse (and its special case, the circle), the plane intersects opposite "edges" of the cone. For the parabola the plane is parallel to one edge of the cone; for the hyperbola the plane is not parallel to an edge but it does not intersect opposite "edges" of the cone. (Remember that these cones extend forever downward; we have shown them with bottoms because we are only displaying a portion of the cone.)
Computing the orbit of the Earth as an ellipse around the center of mass for the Earth-Sun system assumes that they are the only two masses in the Universe. In reality, the Universal Law of Gravitation implies that the Earth interacts gravitationally not only with the Sun, but with every other mass in the Universe: the Moon, the other planets, asteroids and comets, the distant stars.
we see that the interactions are largest when two situations are fulfilled: (1) the product of the masses of the two objects is large, which maximizes the numerator of the expression for the strength of the gravitational force, and (2) the objects are near each other, which minimizes the denominator of the force equation. The two-body approximation that the orbits of the planets are determined only by the gravitational interaction between the Sun and the planet is possible because
of Motion
Let us begin our explanation of how Newton changed our understanding of the Universe by enumerating his Three Laws of Motion.
Newton's First Law of Motion:
I. Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it. |
Newton's Second Law of Motion:
II. The relationship between an object's mass m, its acceleration a, and the applied force F is F = ma. Acceleration and force are vectors (as indicated by their symbols being displayed in slant bold font); in this law the direction of the force vector is the same as the direction of the acceleration vector. |
This is sometimes summarized by saying that under Newton, F = ma, but under Aristotle F = mv, where v is the velocity. Thus, according to Aristotle there is only a velocity if there is a force, but according to Newton an object with a certain velocity maintains that velocity unless a force acts on it to cause an acceleration (that is, a change in the velocity). As we have noted earlier in conjunction with the discussion of Galileo, Aristotle's view seems to be more in accord with common sense, but that is because of a failure to appreciate the role played by frictional forces. Once account is taken of all forces acting in a given situation it is the dynamics of Galileo and Newton, not of Aristotle, that are found to be in accord with the observations.
Newton's Third Law of Motion:
III. For every action there is an equal and opposite reaction. |
There is a popular story that Newton was sitting under an apple tree, an apple fell on his head, and he suddenly thought of the Universal Law of Gravitation. As in all such legends, this is almost certainly not true in its details, but the story contains elements of what actually happened.
What Really Happened with the Apple?
Probably the more correct version of the story is that Newton, upon observing an apple fall from a tree, began to think along the following lines: The apple is accelerated, since its velocity changes from zero as it is hanging on the tree and moves toward the ground. Thus, by Newton's 2nd Law there must be a force that acts on the apple to cause this acceleration. Let's call this force "gravity", and the associated acceleration the "accleration due to gravity". Then imagine the apple tree is twice as high. Again, we expect the apple to be accelerated toward the ground, so this suggests that this force that we call gravity reaches to the top of the tallest apple tree.Sir Isaac's Most Excellent Idea
Now came Newton's truly brilliant insight: if the force of gravity reaches to the top of the highest tree, might it not reach even further; in particular, might it not reach all the way to the orbit of the Moon! Then, the orbit of the Moon about the Earth could be a consequence of the gravitational force, because the acceleration due to gravity could change the velocity of the Moon in just such a way that it followed an orbit around the earth. This can be illustrated with the thought experiment shown in the following figure. Suppose we fire a cannon horizontally from a high mountain; the projectile will eventually fall to earth, as indicated by the shortest trajectory in the figure, because of the gravitational force directed toward the center of the Earth and the associated acceleration. (Remember that an acceleration is a change in velocity and that velocity is a vector, so it has both a magnitude and a direction. Thus, an acceleration occurs if either or both the magnitude and the direction of the velocity change.)The Center of Mass for a Binary System
If you think about it a moment, it may seem a little strange that in Kepler's Laws the Sun is fixed at a point in space and the planet revolves around it. Why is the Sun privileged? Kepler had rather mystical ideas about the Sun, endowing it with almost god-like qualities that justified its special place. However Newton, largely as a corollary of his 3rd Law, demonstrated that the situation actually was more symmetrical than Kepler imagined and that the Sun does not occupy a privileged postion; in the process he modified Kepler's 3rd Law. Consider the diagram shown to the right. We may define a point called the center of mass between two objects through the equationsNewton's Modification of Kepler's Third Law
Because for every action there is an equal and opposite reaction, Newton realized that in the planet-Sun system the planet does not orbit around a stationary Sun. Instead, Newton proposed that both the planet and the Sun orbited around the common center of mass for the planet-Sun system. He then modified Kepler's 3rd Law to read,Two Limiting Cases
We can gain further insight by considering the position of the center of mass in two limits. First consider the example just addressed, where one mass is much larger than the other. Then, we see that the center of mass for the system essentially concides with the center of the massive object:These limiting cases for the location of the center of mass are perhaps familiar from our afore-mentioned playground experience. If persons of equal weight are on a see-saw, the fulcrum must be placed in the middle to balance, but if one person weighs much more than the other person, the fulcrum must be placed close to the heavier person to achieve balance.
Here is a Kepler's Laws Calculator that allows you to make simple calculations for periods, separations, and masses for Keplers' laws as modified by Newton (see subsequent section) to include the effect of the center of mass. (Caution: this applet is written under Java 1.1, which is only supported by the most recent browsers. It should work on Windows systems under Netscape 4.06 or the most recent version of Internet Explorer 4.0, but may not yet work on Mac or Unix systems or earlier Windows browsers.)
Weight and the Gravitational Force
We have seen that in the Universal Law of Gravitation the crucial quantity is mass. In popular language mass and weight are often used to mean the same thing; in reality they are related but quite different things. What we commonly call weight is really just the gravitational force exerted on an object of a certain mass. We can illustrate by choosing the Earth as one of the two masses in the previous illustration of the Law of Gravitation:Mass and Weight
Mass is a measure of how much material is in an object, but weight is a measure of the gravitational force exerted on that material in a gravitational field; thus, mass and weight are proportional to each other, with the acceleration due to gravity as the proportionality constant. It follows that mass is constant for an object (actually this is not quite true, but we will save that surprise for our later discussion of the Relativity Theory), but weight depends on the location of the object. For example, if we transported the preceding object of mass m to the surface of the Moon, the gravitational acceleration would change because the radius and mass of the Moon both differ from those of the Earth. Thus, our object has mass m both on the surface of the Earth and on the surface of the Moon, but it will weigh much less on the surface of the Moon because the gravitational acceleration there is a factor of 6 less than at the surface of the Earth.We now come to the great synthesis of dynamics and astronomy accomplished by Newton: the Laws of Kepler for planetary motion may be derived from Newton's Law of Gravitation. Furthermore, Newton's Laws provide corrections to Kepler's Laws that turn out to be observable, and Newton's Law of Gravitation will be found to describe the motions of all objects in the heavens, not just the planets.
Acceleration in Keplerian Orbits
Newton's Laws and Kepler's Laws
Since this is a survey course, we shall not cover all the mathematics, but we now outline how Kepler's Laws are implied by those of Newton, and use Newton's Laws to supply corrections to Kepler's Laws.- Since the planets move on ellipses (Kepler's 1st Law), they are continually accelerating, as we have noted above. As we have also noted above, this implies a force acting continuously on the planets.
- Because the planet-Sun line sweeps out equal areas in equal times (Kepler's 2nd Law), it is possible to show that the force must be directed toward the Sun from the planet.
- From Kepler's 1st Law the orbit is an ellipse with the Sun at one focus; from Newton's laws it can be shown that this means that the magnitude of the force must vary as one over the square of the distance between the planet and the Sun.
- Kepler's 3rd Law and Newton's 3rd Law imply that the force must be proportional to the product of the masses for the planet and the Sun.
Conic Sections and Gravitational Orbits
The ellipse is not the only possible orbit in a gravitational field. According to Newton's analysis, the possible orbits in a gravitational field can take the shape of the figures that are known as conic sections (so called because they may be obtained by slicing sections from a cone, as illustrated in the following figure).Examples of Gravitational Orbits
We see examples of all these possible orbitals in gravitational fields. In each case, the determining factor influencing the nature of the orbit is the relative speed of the object in its orbit.- The orbits of some of the planets (e.g., Venus) are ellipses of such small eccentricity that they are essentially circles, and we can put artificial satellites into orbit around the Earth with circular orbits if we choose.
- The orbits of the planets generally are ellipses.
- Some comets have parabolic orbits; this means that they pass the Sun once and then leave the Solar System, never to return. Other comets have elliptical orbits and thus orbit the Sun with specific periods.
- The gravitational interaction between two passing stars generally results in hyperbolic trajectories for the two stars.
- Java applet illustrating properties of a circle
- Java applet illustrating properties of an ellipse
- Java applet illustrating properties of an hyperbola
- Java applet illustrating properties of a parabola
Computing the orbit of the Earth as an ellipse around the center of mass for the Earth-Sun system assumes that they are the only two masses in the Universe. In reality, the Universal Law of Gravitation implies that the Earth interacts gravitationally not only with the Sun, but with every other mass in the Universe: the Moon, the other planets, asteroids and comets, the distant stars.
The Two-Body Approximation
However, from the form of the gravitational force- The Sun is so massive compared with every other object in the Solar System,
- Objects outside the Solar System such as stars are so distant that the distance squared factor in the denominator renders their gravitational interactions with the planets negligible.
Gravitational Perturbations
However, the small deviations from this ideal picture have consequences if careful measurements are made. These small deviations from the simplified picture are called perturbations. They can be calculated systematically using Newton's laws of motion and gravitation from the positions of the known masses in the Solar System. If we account carefully for all known gravitational perturbations on the motion of observed planets and the motion of the planet still deviates from the prediction, there are two options:- Newton's Law of Gravitation requires modification,
- There is a previously undetected mass that is perturbing the orbits of the observed planets.
Post a Comment: